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This paper is concerned with a general study of the modal structure for stratified 
viscous plane Couette flow with a constant buoyancy frequency. When the overall 
Richardson number Ri is zero, the velocity and temperature modes are distinct but 
as Ri is increased there is an intricate interaction between them. Some simple analytical 
results are obtained for large and small values of the Reynolds number and more 
detailed results are given for Ri = 0, 4, 4 and 4. The present theory would appear to be 
reasonably complete for 0 < Ri < 4; for Ri > 4, however, an important open question 
concerns the relationship between the limiting form of the viscous modes as the 
Reynolds number tends to infinity and the spectrum of internal gravity waves. 

1. Introduction 
The effects of stratification on the stability of parallel shear flows are usually studied 

in an inviscid approximation (see, for example, Drazin & Howard 1966; Howard 8: 
Maslowe 1973). The problem is thengoverned by the Taylor-Goldsteinequation, which, 
like Rayleigh's stability equation for a homogeneous fluid, is singular at any point 
where the basic flow speed U ( z )  is equal to the wave speed c.  A statically stable density 
distribution would be expected, on general physical grounds, to have a stabilizing effect 
and it has been proved by Miles (1961) and Howard (1961) that stability is assured if 
the local Richardson number J ( z )  = -gp'/pU'2 exceeds 4 everywhere. Circumstances 
are known, however, in which a basic flow which is stable in the absence of stratification 
can become unstable when certain statically stable density distributions are imposed, 
and some examples of this phenomenon have been discussed by Howard & Maslowe 
(1973). A particularly dramatic example of this phenomenon was discovered recently 
by Huppert (1973, $2.3) ,  who showed that plane Couette flow with (dimensionless) 
buoyancy frequency N 2 ( z )  = z2 is unstable if the (overall) Richardson number is 
larger than t. 

Huppert's results for the inviscid problem are so striking that we felt it would be of 
interest to study the effects of including both viscosity and thermal conductivity. 
Before doing so, however, we felt that it would be desirable, for purposes of comparison, 
to consider the simpler problem of stratified plane Couette flow with a constant 
buoyancy frequency. This is a problem for which no instability is to be expected (and 
none was found) but it does lead to an interesting and basic study of the interaction 
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between the velocity and temperature modes in a stratified shear flow. In  part 2 we 
shall copsider-Huppert’s problem and study the changes in the modal structure which 
lead to lnstablllty even when the stratification is statically stable. 

2. The governing equations 
The linearized disturbance equations which govern the stability of thermally 

stratified shear flows were first derived by Koppel(l964). In  deriving these equations 
the usual Boussinesq approximation was made and the effects of both viscosity and 
thermal conductivity were included. Koppel also derived the generalization of Squire’s 
theorem for this problem and showed that “the three-dimensional problem is equi- 
valent to a two-dimensional problem at a smaller Reynolds number and a larger 
Richardson number”. I n  the present paper, therefore, we shall consider only two- 
dimensional disturbances. The corresponding results for three-dimensional disturb- 
ances could, if required, then be obtained by the use of Squire’s transformation as 
discussed by Gage & Reid (1968). 

A slightly different form for the governing equations has been given by Baldwin & 
Roberts (1970), who considered the perturbation u, in the buoyancy force per unit 
mass rather than the perturbation 8, in the temperature. These two quantities are, of 
course, related by a, = olg8,, where a: is the coefficient of thermal expansion and g is 
the acceleration due to gravity, but the equations obtained by Baldwin & Roberts 
have some advantages, particularly in relation to the inviscid theory. 

For the purpose of writing the governing equations in dimensionless form it is con- 
venient to introduce a characteristic length L, equal to half the width of the channel 
and a characteristic velocity U, equal to the maximum velocity of the basic flow. I n  
addition, u, will be made dimensionless with respect to g .  We now introduce a stream 
function $(z)  eia(x-et) in the usual way so that u = $’ and w = - ia4, and let u also be of 
the form a ( z )  eia(z-et). The governing equations can then be written in the dimensionless 
form 

(2.1a, b )  

where 

La$ = Ri CT, L ~ u  = - N2(z)  $, 

L, = (iaRP)-l (D2 - a2) - (U  - C )  (2.2) 

and L4 = (iaR)-l(D2-a2)2-(U-c)(02--a:2)+ U”. (2.3) 

$ = $ ’ = u = O  at z = f l .  (2-4) 

We also have the boundary conditions 

The Prandtl number P ,  Reynolds number R and (overall) Richardson number Ri 
which appear in these equations are given by 

P = V / K ,  R = U,L,/v, Ri = gL,/Ug, (2.5) 

and the unperturbed flow is characterized by the velocity profile U ( z )  and buoyancy 

For some purposes it is convenient to eliminate u between (2.1 a, b )  and this gives 

L2L4$ = - Ri N ~ ( z )  6, (2.7) 
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together with the boundary conditions 

q5=$'=L4q5=0 at z = + I .  (2.8) 

(2.9) 

If we formall: let R 3 00 in (2.7) we obtain the Taylor-Goldstein equation 

( U - C )  (02-a') q5 - U"q5 + Ri(U-c)-lN2(z) q5 = 0, 

which governs the stability of stratified inviscid shear flows. Equation (2.9) plays the 
same role in the present theory as Rayleigh's equation does in the stability theory for 
homogeneous shear flows. I n  the inviscid theory, the local Richardson number 

(2.10) 

plays a particularly important role; for, as Miles (1961) and Howard (1961) have 
proved, a suficient condition for stability is that J ( z )  should exceed & everywhere. It is 
important, therefore, to distinguish between the local and overall Richardson numbers, 
which are related by 

J(x )  = Ri N'(Z)/{ U'(Z)}'. (2.11) 

A general discussion of (2.1) or (2.7) is clearly a formidable task and we now wish to 
consider various simplifying assumptions. When asymptotic methods of approximation 
are used, an enormous simplification can be achieved by assuming that P = 1.  This 
assumption was made by Gage & Reid (1968) in their study of the stability of stratified 
plane Poiseuille flow for which U ( z )  = 1 - 22 and N2(z) = 1.  More recently, Tveitereid 
(1974) has considered the same problem but without assuming that P = 1 and he 
found that his results were not sensitive to variations in the Prandtl number over a 
fairly wide range. This work by Gage & Reid and Tveitereid was concerned primarily 
with the determination of the value of Ri a t  which the flow becomes completely stable 
and, as a result, only one mode was studied. If, however, one is interested in the effects 
of stratification on the general structure of the modes then it would be natural to 
consider the simpler case of plane Couetta flow with U ( z )  = z and N 2 ( z )  = 1. The modal 
structure for unstratified plane Couette flow is now fairly well understood from the 
work of Grohne (1954), Gallagher & Mercer (1962, 1964) and Gallagher (1974). This 
work shows that most of the essential features of the problem are still present if we 
set a = 0 but treat aR as finite. This approximation not only reduces the amount of 
numerical work required but also leads to a further simplification in the asymptotic 
parts of the analysis. 

3. The velocity and temperature modes when Ri = 0 

(2.1 a, b )  become 

and we can therefore distinguish two classes of modes: the velocity modes, which satisfy 
the Orr-Sommerfeld equation L4$ = 0, and the temperature modes, for which $ = 0 
and L'c~ = 0. These modes are thus independent of the stratification and depend only 
on the velocity distribution of the basic flow. The velocity modes for plane Couette flow 
have been extensively studied and only a brief summary of the most essential results 

When Ri = 0 the modal structure has a particularly simple form. In  this limit 

L4$ = 0, L,c~ = - N2(2)  4, (3.1) 
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FIGURE 1. The first four velocity modes for plane Couette flow with u = 0 but uR finite. -, sym- 

metric modes with c, = 0; -- -, asymmetric modes with c, + 0; 0, exact andytical results. 

need be given here. Simple analytical results can be obtained as aR -+ 0 or 00, and 
asymptotic methods are effective in dealing with the so-called ‘symmetric’ (or 
‘standing’ or ‘centre’) modes, for which c, = 0. The corresponding analysis for the 
temperature modes is very much simpler since they satisfy a second-order equation but 
the results do have a certain qualitative similarity with the velocity modes and this 
suggests that a more general study of the temperature modes and their relationship to 
the velocity modes would be of considerable interest. 

The velocity modes 
Consider f i s t  the limit as aR -+ 0, which corrresponds to considering the decay modes 
for a fluid at  rest. In  this limit c, = 0 and aRci -+ -A2 .  When a = 0, h is determined 
from the eigenvalue problem $lV + h2$“ = 0 with $ = $’ = 0 at z = f. 1. Thus, for the 
even modes we have sin h = 0 and hence h/?r = 1,2,3,  . . . ; for the odd modes, however, 
we have tanh = h and hence A/” z 1.430, 2459, 3.471, ... . 

Consider next the limit as aR -+ co. In  this limit the modes are of the ‘asymmetric’ 
(or ‘travelling ’ or ‘edge ’) type with 

(3.2) ( 1 f. c,. + ici) (aR)i -+ - zis e - b i ,  

where zis (8  = 1,2, ...) are the (complex) zeros of A,(z, 1) with Im ( -2,) > 0, z-, = z: 
and, following Reid (1972), 

A,(z, 1) = - jzm Ai ( t )  dt .  (3.3) 
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FIGURE 2. The first four temperature modes for plane Couette 
flow with a = 0 but aR finite. 
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For s = 1 we have z1 e-Qni g - 4.1288 + 1.0626i and for s z 2 it  is sufficient for most 
purposes to use an asymptotic approximation for the zeros such as the one given by 
Reid (1974). In  terms of the notation introduced in the appendix, z, E a,(l). 

For finite values of aR the symmetric modes can be calculated with good accuracy 
by the use of asymptotic methods but for the asymmetric modes a direct numerical 
calculation seems to be required. The velocity modes appear in groups of four inter- 
connected modes and the behaviour of the first such group is shown in figure 1.  
Additional results have been given by Gallagher (1974)) who calculated the first twelve 
modes for a = 0,  0-6, 1 and 2. 

The temperature modes 

I n  discussing the temperature modes it is not necessary to set P = 1 or a = 0 and we 
do so only to simplify the comparison with the corresponding results for the velocity 
modes. Thus, as aR -+ 0, we again have c, = 0 and aRci -+ - p 2  (say), where p is now 
determined from the eigenvalue problem I Y " + ~ %  = 0 with IY = 0 at z = & 1. For the 
even modes we have cosp = 0 and hence pu/n = Q, 8, ...; for the odd modes we have 
sinp = 0 and hence p/n = 1)  2, . . . . The even velocity modes and the odd temperature 
modes therefore have the same eigenvalues but the corresponding eigenfunctions are 
different. 

More generally, the eigenvahe problem for the temperature modes is defined by 

If this equation is multiplied by IY* and then integrated over the range of z we obtain 
L 2 a = 0  with a = O  a t  z = f l .  (3.4) 
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from which it immediately follows that 
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Umi, < c, < Urnax, ci < - (3n2+a2)/aRP. (3.6) 

This estimate for ci is realistic for small but not for large values of aRP. It does show, 
however, that the temperature modes are all stable. 

The general solution of (3.4) can be expressed in terms of the Airy functions 
A1([+at2) and A2([+a2e2), where 

5 = ( z -c ) /E ,  E = (iaR)-*, (3.7) 

and we have again set P = 1. The case P += 1 can, of course, be treated by merely 
redefining E as (iaRP)-*. To simplify the discussion we shall now suppose that a = 0 
with aR finite. The eigenvalue relation then becomes 

4 C 1 9  C2) = Al(CdAdC2) -A1(C2)A2(Yd = 0, (3.8) 

where cl = - (1  + C ) / E  and c2 = (1 - c)/s. The roots of this equation are of two distinct 
types depending upon whether c, = 0 or not. When c, = 0 the roots are symmetrically 
located with respect to the ray ph c = #n and for this reason they are sometimes called 
the symmetric modes; otherwise they are of asymmetric type. 

I n  discussing the symmetric modes it is convenient to introduce the polar 
representation 

f;, = r exp (gni + 8i), c2 = r exp (jni - Oi), (3.9) 

in terms of which we have 
(aR)) = r sin 8, c = - i cot 8. (3.10) 

When cl and f lie on the anti-Stokes lines phc  = 7r and &r respectively, i.e. when 
8 = in, an exact solution of (3.6) is possible. In  this special case we have 

Cl = - r ,  f = reini, (aR)) = 443 r,  c = -i443. (3.11) 

After some reduction, (3.8) becomes 

A = &e%ni(3Ai2 ( - T )  - Bi2 ( - r)) ,  (3.12) 

which can also be written in the form 

A = idTi rJ-,(E) J$3, (3.13) 

where 5 E jd. The zeros of this equation are thus simplyj,+,s (8  = 1,2, ...). For most 
purposes, however, it is entirely adequate to use the asymptotic approximations 

If the Airy functions which appear in (3.8) are now approximated in the complete 

A N 4n-1 e t i  r-i(sin (26 sin 88) + t exp ( - 2f; cos go)}. 

j,,,, ( s + i - * ) n .  

sense by the leading terms of their asymptotic expansions, then we obtain 

(3.14) 

When 8 = in this result reduces to the corresponding expansion of (3.13). In the 
derivation of the approximation (3.14) it  was assumed not only that r is large but also 
that 8 is fixed, i.e. that aR is large. Nevertheless, it can easily be verified that if we let 
8 -+ 0 in (3.10) and (3.14) then we recover the results obtained above for aR + 0. For 
computational purpaes, therefore, the approximation (3.14) is entirely adequate. 
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The direct calculation of the asymmetric modes from (3.8) or, more precisely, from 
an approximation like (3.14) is more difficult. As aR -+ 00, however, it is easy to show 
that (1 & c, + ici)  (aR)* --f - a, e a n i ,  (3.15) 

where a, (s = 1,2, . . .) are the (real) zeros of Ai (2). Again, it is sufficient for moat pur- 
poses to use the approximation a, N - [&7(4s - l)]'. 

These results for the temperature modes are analogous to the results given by Reid 
(1974) for the velocity modes. The behaviour of the first four temperature modes is 
shown in figure 2. Although they differ quantitatively from the velocity modes, their 
general structure is remarkably similar. 

4. The modal structure when 0 < Ri < 4 
We now wish to consider the interaction between the velocity and temperature 

modes which occurs when Ri > 0. For fixed values of Ri, simple analytical results can 
be obtained as aR -+ 0 and aR + CO; for finite values of aR, however, a direct numerical 
attack seems to be required. 

Consider first the low Reynolds number limit. As aR -+ 0 it is known that the wave 
speed c can be expanded in the form 

iaRc = do) + iaRc(1) + (iaR)2 d2) + . . .) (4- 1) 

where c(0) and c(1) give the limiting values of ci and c, respectively. More generally, 
however, it is not difficult to show that c(0) is independent of both U and N2,  that c(1) 

depends only on U, and that c(2) depends on both U and N2.  Thus, in this limit, we can 
continue to distinguish between the velocity and temperature modes even when 
Ri > 0. 

Consider next the high Reynolds number limit. General results are difficult to 
obtain in this limit and we shall therefore simplify the problem drastically by assuming 
that 

With these assumptions, (2.7) can be reduced to a form which contains only the single 
parameter Ri. For this purpose let 

P = 1, U ( z )  = z, N 2 ( z )  = 1, a = 0 with aR finite. (4.2) 

E = (iaR)-), 6 = (z-c)/E, D = d/d[, A = D 2 - [ .  (4.3) 

(4.4) 

q5 = D# = AD2# = 0 a t  y = Q, 5,) (4.5) 

Equation (2.7) then becomes simply 

and the boundary conditions are 
(A2D2+ Ri) # = 0 

where cl = - (1  + C)/E and = ( 1  - c)/e. From the discussion given by Hughes & Reid 
(1968) in connexion with a related problem it follows immediately that (4.4) can be 
written in the factorized form 

(AD +PI) (AD +Pz) q5 = 0, (4.6) 

where pl and p z  are the roots of the indicia1 equation p ( p  - 1)  + Ri = 0 associated with 
the Taylor-Goldstein equation (2.9), i.e. 

131, ~2 = ${ 1 k (1  - 4Ri)t). (4.7) 
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Thus, provided p1 $1 p,, i.e. Ri $1 4, the solutions of (4.6) can be expressed in terms of 
the generalized Airy functions 

Al(C,Pi+l),  A,(C,Pi+l), W - , P i + l )  (i = 1,212 (4.8) 

where t-P exp (Ct - it3) dt, (4.9) 

(4.10) 

and Lk are the usual Airy contours with k = 1 ,2 ,3 .  Since the integrands in (4.9) and 
(4.10) are, in general, multiple-valued, we shall suppose that a cut has been introduced 
in the t plane running from the origin to infinity along the positive real axis. This class 
of Airy functions was first introduced by Hughes & Reid (1968) and has been discussed 
further, for integral values of p ,  by Reid (1972). 

The required eigenvalue relation can be derived in the usual way by forming a linear 
combination of the'six functions (4.8) and then applying the boundary conditions (4.5). 
In  applying the third of these boundary conditions, we may note that 

A D 2 A k ( C , p f 1 )  = -(P-l)Ak(C,P) (4.11) 

with a similar relation for Bk(C,p + 1).  Thus far no restriction has been placed on the 
magnitude of aR. Since we are primarily interested in obtaining the generalization of 
the results (3.2) and (3.15) for Ri > 0, we shall not pause to give an analytical discussion 
of the symmetrical modes but proceed directly to a discussion of the asymmetrical 
modes for which c, -+ f 1 as aR -+ co. In  this limit it  is found that 

(4.12) 
either Cl -+ Q, q 4 - 1  as Cz-+-,ooin S, 
or c2 -+ CSe+i, cr.f + 1 as Cl + 00 in S,, 

which is equivalent to (3.2) with replaced by Q, where the Cs(Ri) (s = 1,2,  ...) are 
the roots of a certain transcendental equation which will now be derived. It is sufficient, 
therefore, to consider only the first of these possibilities. The eigenvalue determinant 
can be substantially simplified by observing that if then, with an ex- 
ponentially small error, we can neglect A1(C2,p) compared with Al(Cl,p) and A2(&,p)  
compared with Az(C2, p); we cannot, however, then neglect Al(cl,  p) compared with 
A2(C2,p), for this would lead to a null result. I n  this approximation, therefore, we obtain 

I 

>> 

x {exp PP174Al(Cl3 -P1) Al(C1, P2) A,({,, Pl) -42(C2,  -P2) 
- exp (2P27i-i) Al(C19 PI) Al(C1, -P2) 4 C 2 ,  -PI) 442K2, P2)> = 0, 

(4.13) 
where use has been made of the second-order Wronskian relations 

and 

(4.14) 
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FIGURE 3. The limiting behaviour of e,(uR)* as UR + a for the 
first four modes and 0 < Ri < a. 

This approximation can now be further simplified by replacing A2(c2,p) with the 
leading term of its asymptotic expansion Thus, as C2 3 00 in S,, we have 

( P Z - P ~ ) ~  
esp ( - 2p27Ti) [cpgexp <+st) *(MJ 4 n r ( p 1 + 1 ) r ( p 2 + 1 )  

x {Al(Cl,Pl) Al(C1, -232) - exp N P 2  -P1) 7 4  C?--PIA1(C1, -PJ 4(Cl3P2)}. 

(4.15) 

are the roots of the 

(4.16) 

When Ri = 0, p ,  = 1 and p 2  = 0, and we therefore recover the previous results (3.2) 
and (3.15) for the velocity and temperature modes respectively. For Ri > 0, the roots 
of (4.16) must be considered in groups of four and, from the results given in the 
appendix, it  then follows that the limiting values of ci(aR)* as aR -+ co for the first 
group of modes have the behaviour shown in figure 3. The coalescence of three of these 
modes as Ri .f 4 is simply a consequence of the fact, as discussed in the appendix, that 

Thus, when Cz -+ 00 in S ,  with 0 < Ri < 2, 5, -+ 6, where the 
equation 

4 5 , P , ) 4 ( 5 3  -232) = 0. 

and I A,([,  ++) = -i2%dAiZ(x) 
Al(5, -$) = -i2n&Ai(x)Ai'(~), 

(4.17) 

where x = 2-35. It should be emphasized, however, that the approximation (4.16) to 
the eigenvalue relation is not uniformly valid as Ri 4 a. Nevertheless, it does provide a 
useful guide to the behaviour of the modes for large values of aR as Ri increases from 

To obtain the complete modal structure for finite values of aR a direct numerical 
approach was adopted. All of the calculations were done on an IBM 360167 computer 
using the method of orthonormalization due to Godunov (1961) as described by Conte 
(1966) and later used by Wazzan, Okamura & Smith (1968). The results are shown in, 
figures 4 (a),  ( b )  and (c) for three typical values of the Richardson number: 4, and 9. 
The modes must now be considered in groups of eight, the structure of which shows 
substantial changes as Ri is increased. In  particular it is no longer possible to maintain 

0 to a. 
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FIGURE 4. The modal structure for (a) Ri = +, (b) Ri = f and (c) Ri = 4. 

a clear distinction between the velocity and temperature modes except for small and 
large values of aR. 
It should also be mentioned that the modes found here for 0 < Ri < & do not have 

an inviscid limit throughout the closed interval - 1 < z < 1. This is entirely to be 
expected, of course, in view of the results obtained by Eliassen, H~iriland & Riis (1953), 
who showed that when 0 < Ri < $ the corresponding inviscid problem has no discrete 
eigenvalues but it does have two continuous spectra, one associated with the velocity 
field and the other with the temperature field. 

5. The internal gravity waves for Ri > & 
When Ri > $, the analysis of the modal structure as aR + 00 becomes substantially 

more difficult and we have not attempted a detailed study of this case. It is of some 
interest, however, to consider the relationship between the present results and those 
obtained by Hrailand (1953) and Eliassen et al. (1953) for the corresponding inviscid 
problem. Thus, on setting U ( z )  = z and N2(z )  = 1 in the Taylor-Goldstein equation 
(2.9), we see that the inviscid problem is given by 

When a = 0 Heriland (1 953) has shown that an explicit solution is possible and that it 
leads to a denumerably infinite set of real eigenvalues which represent stable internal 
gravity waves with wave speeds lying outside the range of U(z) .  Thus, if c is real and 
#(z,  c) is an eigenfunction of the problem (5.1) then so too is q5( - 2, - c). It is sufficient, 
therefore, to take c positive. For a = 0, the eigenvalues are given by 

(2 - c)Z ( 0 2 -  a2 )q5+Riq5 = 0 with q5( 1 )  = 0. (5.1) 

c,(Ri) = coth (nn/2,~) (n = 1,2 ,  ...), (5.2) 
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FIGURE 5. The eigenfunctions (5.3) for the internal gravity waves for 

a = 0 and Ri = 9.25, i.e. ,u = 3. 

where p = (Ri - a)&, and the corresponding eigenfunctions, normalized such that 
$A(- 1) = 1, are 

$,(z) = ( - i )n- lp- l (cn  + 1)) (c, - z)+ sin { p log (::I;)). - (5.3) 

The eigenvalues (5.2) form a decreasing sequence with limit point at I and for Ri = 4, 
for example, all lie in the range 1 < c, < cothn z 1.0037. 

Eliassen et al. (1953) assumed, but were unable to prove, that this set of eigen- 
functions is complete and hence, at least by implication, that there is no continuous 
spectrum if Bi > a. They then obtained a formal solution of the initial-value problem 
in terms of these eigenfunctions from which they concluded that the flow is stable if 
Ri > 4. The eigenvalue problem (5.1) is not of Sturm-Liouville type and, as a result, 
the eigenfunctions (5.3) have some rather unusual properties. Consider, for example, 
the distribution of their zeros. For this purpose let z,, (m = 0,1 ,2 ,  . . . , n) denote the 
zeros of $,(z) with 

(5.4) 

Then it is easy to show that 
(5.5) 

In  particular, the eigenfunctions $,(z) have no zeros in the interval - 1 < z < z,+~, ,. 
As n + 00 or, more precisely, when n 

- 1 = z,, < 2,+1,n < ... < Zl, < Zon = 1. 

zmn = c,  - emn/p(c, - I). 

p, we have 

(5.6) 1 - 2 e - 4 ~  
Zn-1,n 

and &(z) N 2~p-'(1-z)~sin{pIog[2/(1-z)]} ( - I  < z < I) ,  (5.7) 

and both of these results are independent of n. When Ri = S, for example, all of the 
zeros lie between 0.9963 and 1. Thus, although the eigenfunctions (5.3) are certainly 
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FIQURE 6. The modal structure for Ri = 10. -, modes which approach i.nterne,l gravity waves 
as aR -+ co with C, given by (5.2); ---, modes for which c, remains within the range of U(z) .  

linearly independent mathematically, they are virtually indistinguishable numerically 
when 4 < Ri 6 3. To illustrate the behaviour of these eigenfunctions, a very much 
larger value of the Richardson number must be chosen and the results shown in 
figure 5 for Ri = 9.25, i.e. p = 3, are fairIy typical. This behaviour of the zeros of &(z) 
may also be related to the fact that the eigenfunctions of the problem (5.1) satisfy 
a rather unusual orthogonality relation. 

The fundamental question, however, is whether or not there is a one-to-one corre- 
spondence between the eigenvalues and eigenfunctions of the viscous problem as 
aR + 00 and the eigenvalues (5.2) and eigenfunctions (5.3) of the inviscid problem. In  
principle at  least it  should be possible to determine analytically which of the viscous 
modes have inviscid limits in the form of internal gravity waves and which, if any, do 
not. Unfortunately, the asymptotic analysis of this problem would appear to be 
substantially more difficult than the one given in $ 4  for 0 < Ri < 4 and such an 
analysis has not yet been attempted. Some numerical results have been obtained, 
however, for Ri = 10 and they are shown in figure 6. Of the twelve modes shown, ten 
of them have values of c, which, as aR .+ 00, lie outside the range of U ( z )  and are in 
close agreement with (5.2). I n  this limit, therefore, they can be identified as internal 
gravity waves and they have been indexed accordingly. For the other two modes, 
however, we find that 

( 1  k c, + ic,) (aR)) -+ (6.513 - 3*626i,) 
8.770 - 4.944i 

as aR .+ CQ. These modes have values of c, which lie inside the range of U ( z )  and hence 
they cannot be identified with the internal gravity waves. The existence of such modes 
having no inviscid limit throughout the closed interval IzI < 1 would then suggest, by 
analogy with the corresponding problem for a non-stratified fluid, that the inviscid 



522 A .  Davey and W .  H .  Reid 

problem may also possess a continuous spectrum in addition to the discrete spectrum 
of internal gravity waves. We believe, therefore, that further clarification is needed 
concerning the relationship between the inviscid initial-value problem on the one hand 
and the limiting behaviour as aR + 00 of the discrete spectrum of the viscous problem 
on the other. 

6. Discussion 
The results presented in this paper would appear to be reasonably complete when the 

overall Richardson number lies in the range 0 < Ri < 4. When Ri = 4, the roots of the 
indicia1 equation are equal and we then have many of the same difficulties as occur in 
the study of the Orr-Sommerfeld equation. When Ri > 4, p z  = p: with Re ( p l )  = 4 
and some of the approximations which led to (4.16) are no longer permissible. A more 
detailed study of this last case would be of particular interest in attempting to clarify 
the relationship between the viscous theory, for which all the modes are discrete, and 
the inviscid theory, for which there may be a continuous spectrum in addition to the 
discrete spectrum of internal gravity waves. 

Many of the present results were obtained on the assumption that a = 0 but aB is 
finite, and this assumption certainly simplifies some parts of the anaIysis and reduces 
the amount of numerical work required. The dependence of the velocity modes on a has 
been thoroughly examined by Gallagher (1974) and it would be reasonable to expect 
similar variations in the stratified case. It is perhaps also worth noting that the limiting 
behaviour of c,(aR)f is independent of a. 

There are a number of respects in which the present theory can be generalized to 
include, for example, more general forms for the basic flow and for the buoyancy. A case 
of particular interest, which will be considered in part 2, is plane Couette flow with 
P ( z )  = 9. This is a case where the basic flow is stable in the absence of stratification 
but is unstable, as Huppert’s (1973) inviscid analysis shows, when the stratification is 
statically stable, contrary to what one might have thought intuitively. 

We are grateful to Dr P. G. Drazin for some helpful comments which led to clarifica- 
tion of the discussion given in $ 5 .  The present work was begun while one of us (W.H.R.) 
was a visiting member of the School of Mathematics, University of Newcastle upon 
Tyne (from September 1973 to March 1974) and he is grateful to Professor P.H. 
Roberts for his kind hospitality and interest in the work. The research reported in this 
paper has been supported in part by the National Science Foundation under grants 
GP-33131X and MCS75-06499 A01 with the University of Chicago. 

Appendix. The zeros of A,@, p )  
In  $ 4 it  was shown that the limiting behaviour of the modes as aR --f co with 

0 < Ri < 4 could be expressed in terms of the zeros of the generalized Airy function 
A,(z, p) .  This function is defined for unrestricted (complex) values of the parameterp by 
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P 
- 0.50 
- 0.45 
- 9.40 
- 0.35 
- 0.30 
- 0.25 
- 0.20 
- 0.15 
- 0.10 
- 0.05 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0-35 
0.40 
0.45 

0.50 
0.55 
0.60 
0-65 
0.70 
0-75 
0-80 
0.85 
0.90 
0.95 

1.00 

Ri 
0.25 
0.2475 
0-24 
0.2275 
0.21 
0.1875 
0.16 
0.1275 
0.09 
0.0475 

0.00 - 
- 
- 
- 
- 
- 
- 
- 
- 

0.25 
0.2475 
0.24 
0.2275 
0.21 
0.1875 
0-16 
0.1275 
0.09 
0.0475 

0.00 

- a,@) - %(P) 
1.6172 3-7115 
1.6823 3.7558 
1.7486 3.7992 
1.8162 3-8417 
1.8852 3.8829 
1.9558 3.9227 
2.0281 3-9607 
2.1022 3.9966 
2.1784 4.0301 
2.2570 4.0607 

2.3381 4.0879 
2.4222 4.1112 
2.5099 4.1297 
2.6016 4.1427 
2.6983 4.1490 
2.8012 4-1473 
2.9123 4.1356 
3.0345 4.1105 
3.1741 4.0658 
3.3465 3-9862 

3.7115 - 
3.7556 f 0.3287i 
3.7986 f 0-4708i 
3.8404 f 0.5836i 
3.8813 f 0.681% 
3.9211 f 0.7708i 
3.9600 f 0.8534i 
3.9980 f 04931 li 
4.0351 f 1.0051i 
4.0714 f 1.0759i 

4.1070f 1.1442i 

Im (a, ,-an<) 

0.8086 
0.8412 
0.8743 
0.9081 
0.9426 
0.9779 
1.0140 
1.0511 
1.0892 
1.1285 

1-1691 
1.2111 
1.2549 
1.3008 
1-3492 
1 a4006 
1.4561 
1.5173 
1.5870 
1.6732 

1-8558 
1.5932 
1.4916 
1.4148 
1.3502 
1.2930 
1.2410 
1.1926 
1.1472 
1.1040 

1-0626 

Im (aae+6) 

1.8558 
1.8779 
1.8996 
1.9208 
1.9415 
1.9613 
1.9803 
1.9983 
2.0151 
2.0304 

2.0440 
2.0556 
2.0648 
2.0713 
2.0745 
2.0737 
2.0678 
2.0552 
2.0329 
1.9931 

1.8558 
2.1624 
2.3070 
2-4257 
2.531 1 
2.6281 
2.7190 
2.8053 
2.8880 
2.9675 

3.0444 

TABLE 1. The first two zeros of A,@, p )  for p = -0.50(0.05)1.00. 

where 0 < pht < 2n and L, is the usual Airy contour that runs from metni to me*ni. 
Alternatively, A,(z,p) can be defined as the solution of the differential equation 

( p z + p - 1  ds d 

with the initial values 

A,(o,p) = e-p7%-+@+2)/r(&p+ 2 ) ) ,  A; (o ,p)  = A,(o,p- I ) .  (A 3) 

It will be convenient for the present purposes to denote the zeros of A,(z,p) by 
us(p) (8  = 1,2, . . .). Thus, if us and a; denote, as usual, the zeros of Ai ( z )  and Ai’(z) 
respectively, then we have 

Furthermore, for half-integral values of p it is not difficult to show (see, for example, 
Hughes & Reid 1968) that A,(z,p) can be expressed in terms of products of Ai (x) and 
Ai’ (x), where x = 2-82. Thus, for example, we have 

(A 4) u,(O) = us, us( - 1)  = u;. 

A,@, Q) = - i2%r4{x Ai2 (x) - Ai’2 (x)], (A 5 )  
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from which (4.17) can be obtained by differentiation. Accordingly, for p = & 4 we have 

and 

These results provide a useful check on the numerical values given in table 1, which 
were obtained by direct integration of (A 2) using the initial values (A 3 ) .  The results 
for 0 < p < * are not needed for the stability problem but they have been included to 
illustrate the general behaviour of the zeros as functions of p .  

From table 1 it can be seen that the zeros of A,(z, p )  are all real ifp < 4 and that they 
occur in complex-conjugate pairs if p > 4. More generally, Wasow's (1953) proof that 
A,@, 1) has no real zeros can easily be extended to show that A,(z, p )  has no real zeros if 
p > 3. For p > 9 we have also adopted the conventions that Im { - u&-,(p)} > 0 and 
that U&I) = ~ & - ~ ( p ) .  

It is also of some interest to obtain asymptotic approximations to the zeros. By a 
slight modification of the analysis given by Reid (1972) it  can be shown that 

(A 8) e-pniZp-l+ n 4  e-pniz-&W+U sin (g - i p n  + in), 1 
A , ( - Z , P )  - 

J3P) 

where E = 823, and this approximation is valid as z -+ 03 in the sector lphzl < jn. For 
p < 4, the algebraic term in (A 8) can be neglected and we then obtain 

-a  (PI M 4 s +  2P- 1)1+ (P < 9). (A 9 )  

This approximation is not uniformly valid, however, as p f 4. For p 2 4, the algebraic 
term in (As)  cannot be neglected. In  this case it is more convenient to denote the 
zeros by aJp) and a$@) (s = 1,2, ...), where, by convention, Im{-as(p)} > 0. In 
terms of this notation we have 

a,-,(P) = as@), d P )  = 4 P ) .  (A 10) 

It is then not difficult to generalize the result given by Zondek & Thomas (1953) for 
p = 1 to obtain 

n+ 
{-a,&))+ N $n(Ss + 2p - 3 )  + i$ cosh-' {- [jn(89 + 2 p  - 3 ) ] p - i ]  ( p  2 9). (A 11) 

U P )  

If, instead, we had obtained the generalization of the simpler result given by Reid 
(1974) for p = 1, then the resulting approximation would not have been uniformly 
valid as p J. 9. 

REFERENCES 

BALDWM, P. & ROBERTS, P. H. 1970 Mathematiha 17, 102. 
CONTE, S. D. 1966 SIAM Rev. 8, 309. 
DRAZIN, P. G. & HOWARD, L. N. 1966 Adv. in  AppZ. Mech. 9, 1-89. 
ELIASSEN, A., HBILAND, E. & RIIS, E. 1953 Two-Dimensional Perturbation of a Flow with 

Constant Shear of a Stratified Fluid. Institute for Weather and Climate Research, Norwegian 
Academy of Sciences and Letters, publ. no. 1. 

GAGE, K. S. & REID, W. H. 1968 J .  FZuid Mech. 33, 21. 
GALLAGHER, A. P. 1974 J .  Fluid Mech. 65, 29. 
GALLAGHER, A. P. & MERCER, A. McD. 1962 J .  Fluid Mech. 13, 91. 
GALLAGHER, A. P. & MERCER, A. McD. 1964 J .  Fluid Mech. 18, 350. 



The stability of stratijied Couette $ow. Part 1 526 

GODUNOV, S. 1961 Usp. Mat. Nauk 16, 171. 
GROHNE, D. 1954 2. angew. Math. Mech. 34, 344. (Trans. N.A.C.A. Tech. Memo. no. 1417.) 
H~ILAND, E. 1953 Cfeojys. Publ. 18, no. 10. 
HOWARD, L. N. 1961 J .  Fluid Mech. 10, 509. 
HOWARD, L. N. & MASLOWE, S. A. 1973 Boundary-kyer Met. 4, 511. 
HUGHES, T. H. & REID, W. H. 1968 Phil. Trans. Roy. SOC. A 263, 57. 
HUPPERT, H. E. 1973 J .  Fluid Mech. 57, 361. 
KOPPEL, D. 1964 J .  Math. Phys. 5 ,  963. 
MILES, J. W. 1961 J .  Fluid Mech. 10, 496. 
REID, W. H. 1972 Studies in Appl. Math. 51, 341. 
REID, W. H. 1974 Studies in Appl. Math. 53, 91. 
TVEITEREID, M. 1974 2. angew. Ma&. Mech. 54, 533. 
WASOW, W. 1953 J .  Res. Nat. Bur. Stand. 51, 195. 
WAZZAN, A. R., OKAMURA, T. T. & SMITH, A. M. 0. 1968 D o u g h  Aircraft Co. Rep. DAC-67086. 
ZONDEIC, B. & THOMAS, L. H. 1953 Phys. Rev. (2) 90, 738. 


